
Chicago

May 19-23

php[tek]2014

Keep up to date at tek.phparch.com

The premier professional PHP conference

with a community flair

2

www.phparch.com

ALSO INSIDE
Editorial:
Masters of Data

Education Station:
Generate Test Data with
Ease Using Faker

Confi dent Coder:
Attention to Detail

Laravel Tips:
Rapid Coding and
Prototyping Through
Generators

� nally{}:
On Elegance

February 2014
VOLUME 13 - ISSUE 2

www.phparch.com

php[architect] m
agazine Feb

ruary 2
0

14
D

atab
ases

Volum
e 13

 Issue 2

Introduction to Neo4j
for PHP - Part 2

SQL to NoSQL Migration

I18n by Translation Through
Proxy

Databases

6 | February 2014 phparch.com

FEATURE

DisplayInfo()

Requirements:
• PHP: 5.3+

• SWeTE: 0.3 or higher

Other Software:
• MySQL 5+

• Apache 1.3+ with mod_rewrite installed

Related URLs:
• SWeTE Website –

http://swete.weblite.ca

• SWeTE GitHub Repository –
http://github.com/shannah/swete

• Open Cart Website -
http://www.opencart.com/

I18n by Translation Proxy
Steve Hannah

Using a translation proxy can
significantly reduce development
and maintenance costs for
multilingual applications
compared to conventional
internationalization approaches.
We will discuss some of the
advantages of the translation
proxy approach, and then
demonstrate a typical
internationalization process
using SWeTE, an open source
translation proxy written in PHP.

http://swete.weblite.ca
http://github.com/shannah/swete
http://www.opencart.com/

 phparch.com February 2014 | 7

I18n is the pseudonym for internationalization.
Its derivation is based on the fact that there
are 18 letters between the ‘i’ and the ‘n’ in
“internationalization”. I18n is the process of
preparing an application for multiple markets, and it
almost always involves adding support for multiple
languages.

In PHP, the conventional process of i18n involves
factoring out all static strings from the PHP code
and templates into language files. On each HTTP
request, the application would then determine the
appropriate language based the environment (e.g.
a cookie, a URL convention, or a user preference)
and load the corresponding language file.

Translating dynamic content is more difficult as
it often requires more substantial changes to the
application structure and flow. For example, a
shopping cart application that supports multiple
languages will need to have a database structure
that accommodates the translations of product
descriptions. Also, the logic that interacts with the
data source will need to be aware of this structure
so that it can load the correct product translations
at runtime and update the correct translations when
product descriptions are modified.

The more complex the application, the more
difficult it will be to internationalize it. In some
cases, it may actually be easier to build the

application from scratch than it would be to refactor
the existing app to support multiple languages.

In this article, I discuss an alternative approach to
i18n using SWeTE (http://swete.weblite.ca), an
open source translation proxy written in PHP. The
SWeTE approach to i18n is radically different than
conventional strategies as it allows you to keep your
application (almost) completely insulated from the
process. Your existing, monolingual application
can remain unchanged with no knowledge that it is
supporting multiple markets in multiple languages.

What is a Translation Proxy?
A translation proxy is simply a reverse HTTP

proxy with a built-in translation dictionary and
mechanisms to perform inline i18n. As shown in
Figure 1, it sits transparently between the client
and the application server, modifying the HTTP
requests and responses as necessary to “fool”
the client into believing that the application
speaks their language. The HTML responses are
parsed into individual strings and compared to a
translation dictionary (which can contain either
human translations, machine translations, or a
combination of both). Strings are replaced by their
corresponding translations and embedded into the
response before it is passed back to the client.

FIGURE 1

App Server
@www.example.com

SWeTE
@fr.example.com

Prepare
Request

Translate
HTML

Response

Translation
Dictionary

HTTP Request

HTTP Request
(in English)

HTTP Request

HTTP
Response
(in French)

http://swete.weblite.ca

8 | February 2014 phparch.com

I18n by TranslaTIon Proxy

Advantages of a Translation
Proxy

By isolating internationalization into a layer of its
own, the translation proxy reaps substantial rewards
in terms of complexity, maintainability, and features.
Adding support for multiple languages entails quite
a number of additional feature requirements for
an application. At a minimum, internationalization
implies at least the following additional
requirements:

1. A mechanism to select the appropriate
language for the client.

2. A mechanism to translate content from one
language to another, e.g. a translation form or
additional fields to edit content in the alternate
languages.

These two requirements can be surprisingly
broad and deep in scope. If your application only
translates static text, then the mechanism for
translation might be as simple as sending your
language files to a translator to be translated.
However, if there is dynamic data that is stored
inside a database, then you’ll probably need
to add sections to the user interface to manage
these translations. If your application deals with
large amounts to data, then you’ll also need to
make sure that you have a way of keeping track of
translation status for all content so that you know
what still needs to be translated or reviewed. If you
are dealing with external translators, you’ll likely
also need to develop a workflow to export the
translations in a format that the translator can work
with and import the translations back into your
application when they are complete.

As you think more about the internationalization
issue, you will realize that it comes with an
enormous amount of baggage - so much so that its
feature requirements can encompass an application
of its own. This is where a translation proxy begins
to make a lot of sense. Rather than weigh down
your application with generic translation features,
you can offload them to a system that specializes in
translation and leave your application to focus on
what it does best.

SWeTE, for example, provides a rich interface for
managing your application’s translations. It provides
translation forms and import/export capability so

that you can easily interface with your translator’s
preferred CAT tools. It also makes it easy to monitor
the state of various translations so that you always
know if there is content that requires your attention.

SWeTE by Example
Much can be said about the theory behind reverse

proxies, translation dictionaries, and the like, but
I’m going to skip all that and cut straight to a real-
world example of using SWeTE to perform i18n on
a PHP application. As a demonstration, I’m going
to take the open source shopping cart Open Cart
(http://www.opencart.com) and use SWeTE to set
up a French proxy for it. The English shopping cart
will be located at:

http://opencartdemo.weblite.ca

The French version will be accessible at:

http://fr.opencartdemo.weblite.ca

Note, that I could have decided to set up
the French site in a subdirectory like http://
opencartdemo.weblite.ca/fr/ instead (or at any URL
for that matter), but I personally find it easier to use
subdomains for the separate sites.

I’ll skip the details of how to install Open Cart.
For this demo, I simply cloned the Git repository
(https://github.com/opencart/opencart) and
followed the installation instructions. The default
install includes some dummy products and
categories, so I didn’t bother entering any custom
data.

Installing SWeTE
SWeTE should run on any server that has PHP

and MySQL installed. If running on Apache, mod_
rewrite needs to be installed. If running on IIS, the
URL rewrite module needs to be installed. This
article assumes that you are running on Apache.
Examples involving mod_rewrite directives will
need to be changed to the equivalent URL rewrite
directives if you are running on IIS.

SWeTE is really just a normal PHP/MySQL
application, so installation is not much different
than for any other PHP/MySQL application. For
this article, I’ll be working directly off of the Github

http://www.opencart.com
http://opencartdemo.weblite.ca
http://fr.opencartdemo.weblite.ca
http://opencartdemo.weblite.ca/fr/
http://opencartdemo.weblite.ca/fr/
https://github.com/opencart/opencart

 phparch.com February 2014 | 9

I18n by TranslaTIon Proxy

repository (http://github.com/shannah/swete) so that I can work with the latest changes. You can do this
also, or you can download the latest release from the SWeTE website (http://swete.weblite.ca).

Step 1: Clone the GIT Repository:

$ git clone https://github.com/shannah/swete.git
Initialized empty Git repository in
 /swete-data-recovery/home/phparch/swete/.git/
remote: Counting objects: 891, done.
remote: Compressing objects: 100% (477/477), done.
remote: Total 891 (delta 447), reused 821 (delta 377)
Receiving objects: 100% (891/891), 4.64 MiB | 7.30 MiB/s,
 done.
Resolving deltas: 100% (447/447), done.

Step 2: Run the ANT Build Script.
SWeTE contains an ANT build script which automates most of the rest of the application setup. It requires

you to have ANT installed on your system.

$ cd swete
$ ant … [Lots of output from running git and checking out submodules etc..]

Step 3: Create an Empty MySQL Database and User
Next, we use code similar to that in Listing 1 to create an empty MySQL database and a user.

Step 4: Set Up the Configuration
Rename the swete-admin/conf.db.ini.
sample file to swete-admin/conf.db.ini.
Then, edit the contents to connect to the
database we just created.

$ cd swete-admin
$ mv conf.db.ini.sample conf.db.ini
$ vi conf.db.ini

We change the contents of conf.db.ini to be:

[_database]
 host=localhost
 name="opencart_fr"
 user="opencart_fr"
 password="password"

LISTING 1
 1. $ mysql -u root -p
 2. Enter password:
 3. Welcome to the MySQL monitor. Commands end with ; or \g.
 4. Your MySQL connection id is 1631248
 5. Server version: 5.1.52 Source distribution
 6.
 7. Copyright (c) 2000, 2010, Oracle and/or its affiliates. All
 8. rights reserved. This software comes with ABSOLUTELY NO
 9. WARRANTY. This is free software, and you are welcome to
10. modify and redistribute it under the GPL v2 license
11.
12. Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the
13. current input statement.
14.
15. mysql> create database opencart_fr;
16. Query OK, 1 row affected (0.00 sec)
17.
18. mysql> create user opencart_fr@localhost identified by
19. ‘password’;
20. Query OK, 1 row affected (0.00 sec)
21.
22. mysql> grant all privileges on opencart_fr.* to
23. opencart_fr@localhost;
24. Query OK, 1 row affected (0.00 sec)
25.
26. mysql> flush privileges;
27. Query OK, 0 rows affected (0.00 sec)
28.
29. mysql> exit;

http://github.com/shannah/swete
http://swete.weblite.ca

10 | February 2014 phparch.com

I18n by TranslaTIon Proxy

Step 5: (Optional) Set Up DNS and Virtual Host
For our example, we’re setting up a subdomain for the French proxy so we need to set up DNS

and add a VirtualHost entry in the Apache config file to point to the SWeTE installation. This step
is optional. The VirtualHost section of the apache config file looks like:

<VirtualHost *:80>
 ServerAdmin info@example.com
 DocumentRoot /home/phparch/swete
 ServerName fr.opencartdemo.weblite.ca
 ServerAlias fr.opencartdemo.weblite.ca
 ErrorLog logs/fr.opencartdemo.weblite.ca-error_log
 CustomLog logs/fr.opencartdemo.weblite.ca-access_log common
</VirtualHost>

After changing the Apache config file, we need to restart the web server for the changes to take
effect.

Step 6: Logging into SWeTE for the First Time
Once all of this configuration is done, open a web browser and point it to the swete-admin

directory of the SWeTE installation:

http://fr.opencartdemo.weblite.ca/swete-admin/

This page takes a few seconds to load the first time because SWeTE needs to run its install scripts
to populate the database. Once this is complete, you should see a login page as shown in Figure
2.

FIGURE 2

http://fr.opencartdemo.weblite.ca/swete-admin/

 phparch.com February 2014 | 11

I18n by TranslaTIon Proxy

The default login username and password are:

username: admin
 password: password

After logging in to SWeTE, you will be directed to the dashboard as shown in Figure 3. Before
proceeding to set up the Open Cart demo proxy, let’s take a moment to get acquainted with the
user interface. There are some main tabs at the top of the page:

• Dashboard - The page we are currently on.
• Sites - Contains the set of websites that are currently set up to be proxied. This is where you

can add, remove, and edit the configuration of websites that are being hosted by this SWeTE
instance.

• Strings - Contains the set of strings in the translation dictionary. This is where you can view,
search, translate, edit, import, and export strings and translations for your websites.

FIGURE 3

12 | February 2014 phparch.com

I18n by TranslaTIon Proxy

Adding the Open Cart Website
Now, let’s proceed to create a proxy site for our shopping cart. On the dashboard, click the

“New Website” button. This should take you to the “New Website” form. We’ll fill in the fields as
shown in Figure 4.

The important fields are:

• Website URL - This should be the full URL (including “http://”) of the English shopping
cart. In my case, I have it installed at http://opencartdemo.weblite.ca/.

• Source Language - This is the language of the shopping cart.
• Target Language - This is the language to which we are translating the site using SWeTE.
• Publish Host - This is the hostname (i.e. domain or subdomain) to access the proxy site

through. In our case, we set up the virtual host “fr.opencartdemo.weblite.ca”” for this
purpose.

• Publish Basepath - In our case, we will leave this as the root (/) of the site. It is possible to
set up a site to run in a subdirectory also.

With these fields filled in, click “Save”. Now if you return to the Dashboard, (by clicking the
“Dashboard” link in the upper left), you should see the Open Cart Demo website listed in the
“Websites” section.

FIGURE 4

http://opencartdemo.weblite.ca/

 phparch.com February 2014 | 13

I18n by TranslaTIon Proxy

Testing the French Proxy
Notice that there are two links to the right of the Open Cart Demo listing: “English” and

“French”. Right click on the “English” link and select “Open in new Window” (or the equivalent
for your browser). This should take you to the source shopping cart (at http://opencartdemo.
weblite.ca). If you do the same (open in new window) for the “French” link, you will be taken
to the URL where the French SWeTE proxy is hosted (http://fr.opencartdemo.weblite.ca). If
everything went well, you should see the exact same content as on the English site.

On my demo site, I ran into a glitch where the homepage wasn’t proxied properly. This is a small
glitch in SWeTE with how it handles requests for the root directory, without specifying a subpath.
In order to resolve this issue, I added a mod_rewrite rule in the SWeTE .htaccess file to rewrite
requests for the root directory so that they go to index.php. If we were proxying a different kind
of application, like a .Net application, we’d probably change this do something like
default.aspx.

After making the change, my .htaccess file looks like :

RewriteEngine On
RewriteRule ^$ index.php
RewriteRule ^swete-admin/ - [L,NC]
RewriteRule . swete-admin/index.php?-action=swete_handle_request [L]

(All I did was add the rule RewriteRule ^$ index.php).

The other two rules in this .htaccess file hint at
how SWeTE works under the hood.

Now let’s try to reload our proxy site from
http://fr.opencartdemo.weblite.ca). You should
see the shopping cart (shown in Figure 5) exactly
as it appeared when loading the application
directly.

At this point, SWeTE is running simply as a
reverse proxy. This can have benefits in itself (e.g.
for performance caching and load-balancing),
but our primary objective in using SWeTE is to
translate the site.

One cool aspect of a SWeTE site is that it should
act as a fully functional proxy of the source
application. We should be able to access not only
the public portions of the application through the
SWeTE proxy, but also the administrative interface
with its full functionality. To demonstrate, let’s visit
the Open Cart administration section through the
French proxy (located at http://fr.opencartdemo.weblite.ca/admin). This is not to be confused
with the SWeTE admin console located at http://fr.opencartdemo.weblite.ca/swete-admin/. As
expected, it allows me to log in just as if I were using the English application.

FIGURE 5

http://opencartdemo.weblite.ca
http://opencartdemo.weblite.ca
http://fr.opencartdemo.weblite.ca
http://fr.opencartdemo.weblite.ca
http://fr.opencartdemo.weblite.ca/admin
http://fr.opencartdemo.weblite.ca/swete-admin/

14 | February 2014 phparch.com

I18n by TranslaTIon Proxy

In my tests, I did run across one small bug when accessing the admin page through the Proxy.
I ran into a JavaScript error that caused the charts not to show up properly. Upon inspection, I
found that the JavaScript contained some embedded HTML strings that caused the SWeTE HTML
parser to choke (it uses the DOMDocument HTML parser). In order to resolve this issue, I needed
to add a directive to SWeTE inside the .htaccess file so that it encodes JavaScript in a way that
won’t interfere with the HTML parser. After doing this, my .htaccess file looks like:

RewriteEngine On
RewriteRule .* - [E=ENCODE_SCRIPTS:1]
RewriteRule ^$ index.php
RewriteRule ^swete-admin/ - [L,NC]
RewriteRule
 . swete-admin/index.php?-action=swete_handle_request [L]

What this essentially does is set the ENCODE_SCRIPTS environment variable which SWeTE
responds to. SWeTE supports a handful of these environment variables for customizing such
things as caching rules and parsing rules. The full list of environment variables can be found in the
SWeTE manual.

Capturing Strings
The translation process in SWeTE has two parts:

1. Capture the strings on the site and load them into the translation dictionary.

2. Translate the strings in the translation dictionary by using the web-based translation form,
exporting them (to CSV, XLIFF, or XLS) and sending them to a translator for translation, or
sending them to Google translate for an automatic machine translation.

The string capturing process is kind of like holding up a fishing net to catch strings of an HTML
response as they pass through the proxy. If string capturing is enabled, then SWeTE will make
note of any strings that it encounters that haven’t yet been added to the translation dictionary.
This happens while the page response is being processed so it is seamless. In other words, if you
want to import the strings for a particular webpage into the translation dictionary, all you have to
do is enable string capturing and load your page of interest in the web browser.

Let’s walk through how we set this up.

Step 1. Enable String Capturing.
From the SWeTE Dashboard, click on the “menu” icon to the right of the “Open Cart Demo”

website listing and select “Edit Site” (as shown in Figure 6). This will bring you to the “Edit
Website” form for the website.

Click the [+] icon next to the “More Details” heading and check the box
next to “Log Translation
Misses”.

Click save when done.

FIGURE 6

 phparch.com February 2014 | 15

I18n by TranslaTIon Proxy

Step 2. Refresh the Open Cart Admin Page.
In a separate window, open the Open Cart admin page to its dashboard. By hitting “Refresh” in

the browser, we are able to cause SWeTE to capture all of the strings on this page.

Step 3. Check the “Strings” Section of the SWeTE Admin
All of the strings on the admin page should now appear in the Strings section of the

SWeTE admin page, as shown in Figure 7.

Translating Strings
Now that we’ve loaded some strings into the dictionary,

we can translate them by checking the box next to them and
clicking the “Translate” button at the top or bottom of the table.
This brings us to a translation form (shown in Figure 8) that lists
the English string above the editable text box where we can
enter a French translation.

After entering some translations, we can return to the Open
Cart admin page on the French proxy site and hit refresh. This
results in those strings appearing in French (see Figure 9).

For the rest of the strings, I’m going to cheat a little bit and
just use Google to translate them all. The “Site Edit Form” in
SWeTE allows you to specify your Google translation API key.
You will then be able to send batches of strings directly to
Google for translation. Sending a batch of strings to Google is
accomplished by checking the box beside the strings we want
to translate and clicking the “Google Translate” button along
the top bar (in the Strings section).

FIGURE 7

FIGURE 8

FIGURE 9

16 | February 2014 phparch.com

I18n by TranslaTIon Proxy

After loading a few more pages and translating them using Google, we are able to navigate our French
shopping cart in 100% French (shown in Figure 10).

Caveats
At this point, you might be tempted to say that we’re done. By traversing the website with string capturing

enabled, we’ve been able to capture all of the strings in the site and translate them. What is left to do? In
my experience, this initial process of installing SWeTE, capturing the strings, and translating the strings will
usually get us about 99% of the way the way there. Unfortunately, that last 1% is just as important as the first
99%.

What is the Remaining 1%?
The actual content of the 1% will depends on the application. The types of things that SWeTE doesn’t

handle out of the box are:

• Translating Non-HTML Content - If the application loads strings inside JavaScript source files or
JSON via Ajax, you may need to implement some custom post-processing for SWeTE to handle it.

• Custom Styles - You may need to provide custom styles for the translated version to satisfy the
requirements of a different audience. SWeTE enables you to create your own custom styles to target the
translated site, but it won’t design these rules for you.

• Translation of Images and Videos - If your application uses images with embedded text, SWeTE
won’t translate these by default. SWeTE allows you to specify alternate images and videos to be used
for different languages, but you would need to create those resources first.

FIGURE 10

 phparch.com February 2014 | 17

I18n by TranslaTIon Proxy

• Formatted Strings - Most applications will include some strings that are created at
runtime using a string template and placeholders that are replaced with variables from the
environment. “Welcome back, admin!” is a string from the Open Cart admin page that is
customized for each user on the site. If the site has a million users, then SWeTE would need a
million separate entries in the translation dictionary - one for each variation. SWeTE supports
markup to specify that certain parts of a string are variables or placeholders, but you’ll
need to either add this markup in the source application’s HTML or implement a SWeTE
preprocessing filter to add this markup at runtime.

• Content that Doesn’t Pass Through HTTP - Some applications send email messages
in response to certain actions. These don’t pass through the SWeTE proxy like the rest of
the application content, so they need to be translated separately. SWeTE does pass an
HTTP header to the application to indicate the language in which the user is accessing the
application, and this information can be used by the application to modify how the email is
sent. It also can be accessed as a web service so it is possible for the web application to pass
the email contents through SWeTE via this web service to obtain a translation before sending
the email. In any case, this is one part that will require extra care above and beyond the initial
setup and translation of the SWeTE site.

Implementing a Site Delegate Class
When you get down to the last 1%, you may find it helpful to implement a PHP delegate class

for your website in SWeTE. A delegate class allows you to define PHP methods that are called at
various stages of the HTTP request/response loop to assist in processing.

Delegate classes should be placed in a PHP file at swete-admin/sites/<site id>/
Delegate.php, and the class name should be: sites_<site id>_Delegate.

In the case of my demo site, the site ID is 428, so my delegate class is located in the file: swete-
admin/sites/428/Delegate.php, and the contents should be:

class sites_428_Delegate {
}

SWeTE supports several hooks for this delegate class. Three of the most commonly implemented
are:

• fixHtml($html) - This method is called before SWeTE parses the HTML content of an HTTP
response from the application. It receives a string with HTML content and should return a
string with either the same content it received (i.e. if no changes were necessary to “fix” the
HTML) or a modified version of it. This method is useful for fixing pages that contain invalid
HTML that causes problems for the HTML parser. It can also be helpful for making changes to
the content using regular expressions.

• preprocess($dom) - This method receives a DOMDocument object which is a parsed
representation of the HTML page that is to be translated. You can modify this object as
desired to make changes to it before it is passed to the document translator. This can be
useful for adding SWeTE markup such as HTML attributes to signify that a section should
or should not be translated or to specify that certain sections should be treated as variable
placeholders.

• preprocessHeader(&$headers) - This hook receives the headers that have been returned
from the application as part of the HTTP response. It provides you with an opportunity to
modify, add, or remove headers as you would want them to be returned to the client. This is,
for example, useful for changing the destination of a redirect header.

18 | February 2014 phparch.com

I18n by TranslaTIon Proxy

You can see a default implementation of the site
delegate class in Listing 2.

Dealing with Personalized
Strings

As was mentioned previously, the Open Cart admin
page contains the string “Welcome back, admin!”,
which will be slightly different for each logged in user.
This will result in a separate string loaded into the
translation dictionary for each user in the system, which
is not ideal. SWeTE offers a solution to this problem by
allowing you to specify that certain HTML tags should be treated as variables or placeholders. If
you wrap a string in a span tag as follows:

some value

SWeTE will ignore its contents for translation. Hence, we can take a string like:

Welcome back admin

change it to:

and SWeTE will then recognize that “admin” is just a variable placeholder. Then, any string in the
form of:

Welcome back xxx

can use a single dictionary entry for its translation.

There are two ways to fix this with the Open Cart application:

1. Change the HTML that Open Cart itself outputs to wrap all variables like this in span tags
with the data-swete-translate="0" attribute.

2. Add this tag at runtime using one of SWeTE’s preprocessing hooks.

For this example, we’re going to try option 2. That way, we don’t need to make any changes to
the Open Cart source at all. This can be done by adding a regular expression pattern replacement
in the site delegate’s fixHtml() method as follows:

Welcome back admin

public function fixHtml($html){
 $html = preg_replace(
 '#Welcome back ([^<]+)#',
 'Welcome back
 $1',
 $html
);
 return $html;
}

LISTING 2
 1. class sites_428_Delegate {
 2. public function fixHtml($html){
 3. return $html;
 4. }
 5.
 6. public function preprocessHeaders(&$headers){
 7.
 8. }
 9.
10. public function preprocess($dom){
11.
12. }
13. }

 phparch.com February 2014 | 19

I18n by TranslaTIon Proxy

Since this regular expression will be applied to every page, any page that contains that string
will be modified such that the name of the logged in user is marked as a variable.

Let’s run a quick test to make sure that this worked. If we now reload the Open Cart Dashboard
in the French Proxy and look at the HTML source for the page, we can see that our change was
made (Figure 11).

If we check out the “Strings” tab in the SWeTE admin console and perform a find for “Welcome”,
we see that there is a string that just says “Welcome back “. Clicking on this string reveals that
there is actually some hidden markup:

<g id="1"></g> Welcome back <v id="2"></v> !

This markup is a glimpse of SWeTE’s normalization function which it performs on strings before
they are passed to the translation dictionary. The <g id="1"></g> tag represents any HTML
tag with a closing tag. This appears because there is actually an <i></i> HTML inline tag just
preceding the “Welcome back” text in the application output. The <v id="2"></v> is a variable
marker, meaning that it represents any HTML tag and contents that contain the data-swete-
translate="0" attribute.

If we translate this string and reload the Open Cart dashboard through the proxy, we should
see that this is translated no matter which user we log in with. (Shown in Figure 12 and Figure 13,
logged in as “steve” and “admin”, respectively).

FIGURE 12 FIGURE 13

FIGURE 11

I18n by TranslaTIon Proxy

STEVE HANNAH is the creator and primary developer for SWeTE. In addition to his work
developing, maintaining, and contributing to open source software projects, he blogs
periodically about software issues on his blog http://sjhannah.com.

@shannah78

Summary
Conventional strategies for i18n in PHP present enormous challenges in terms of

both development and maintenance. Translation proxies allow you factor out most
(or all) i18n logic into a separate layer which is largely decoupled from the rest
of the application. This can lead to substantial savings in both development and
maintenance resources.

In this article, we saw how to use SWeTE (a PHP translation proxy) to create a French
version for an English shopping cart. The same process can be followed to localize
any web application, though each application will present its own challenges. SWeTE
provides both a gentle learning curve (you should be able to set up a translation
proxy for your application in under 20 minutes) and a great degree of flexibility.
Most applications can be internationalized with very little to no customization. For
those applications that require more attention, SWeTE provides several avenues for
customization including:

1. Environment variables

2. Hints and directives embedded in HTML markup

3. Custom PHP event handlers

This article dealt with a basic case, but expanding these examples to a more
complex case should be fairly straight forward.

As with any open source project, SWeTE will improve as adoption increases, but
it already includes most of the features necessary for maintaining a multilingual
application. If you want to find out more, try it out, or contribute, you can visit the
SWeTE website at http://swete.weblite.ca.

20 | February 2014 phparch.com

http://sjhannah.com
https://twitter.com/shannah78
https://twitter.com/shannah78
http://swete.weblite.ca

magazine

books

conferences

training

phparch.com

Each issue of php[architect]
magazine focuses on an important
topic that PHP developers face
every day.

Topics such as frameworks, security,
ecommerce, databases, scalability, migration,
API integration, devops, cloud services,
business development, content management
systems, and the PHP community.

Digital and Print+Digital
Subscriptions

Starting at $49/Year

http://phpa.me/mag_subscribe

Get php[architect] to your doorstep
or delivered digitally every month!

Dynamic Sites with Varnish

Varnish Edge Side Includes

Fully Isolated Tests in Symfony2

WordPress Themes,
Plugins and

Dependencies

ALSO INSIDE
Editorial:

Education Station:
Satis For Package
Deployment Simplicity

� nally{}:
Scary Statistics

Scalability

php|architect
Print Edition

2001-2009

php|architect
Print Edition

2001-2009

Chicago

May 19-23

php[tek]2014

Keep up to date at tek.phparch.com

The premier professional PHP

conference with a community flair

www.phparch.com October 2014
VOLUME 12 - ISSUE 10

php[architect] m
agazine O

ctob
er 2

0
14

Scalab
ility

Volum
e 12

 Issue 10

www.phparch.com November 2014
VOLUME 12 - ISSUE 11

Functional Testing in
Symfony 2

Interoperability:
The Future of PHP

Laravel -
A Modern PHP Framework

Adianti Framework

ALSO INSIDE
Editorial:

Time to Play

Education Station:
Satis for Package

Deployment Simplicity

The Con�dent Coder:
Episode 2: Descriptive

Naming Schemes

�nally{}:
Making Friends

Frameworks

www.phparch.com December 2013
VOLUME 12 - ISSUE 12

Everyone Needs a Toolbox

Pretty, Pretty Pictures
(Vector Graphics with Raphaël)

Search Simply PHP + Cloudant’s
BigCouch

Git for Web Developers

The Unix Toolbox

ALSO INSIDE
Editorial:

‘Tis The Season

Education Station:
Git Extras -

Make Working with Git
Simple and Easy

The Confident Coder:
Array Key Accuracy

finally{}:
It’s Been a Year

Holiday
Gift Guide

www.phparch.com January 2014
VOLUME 13 - ISSUE 1

Console Apps in ZF2

Introduction to Neo4j
for PHP

Develop Yourself

Everything Your
Teacher Taught You
About OOP is Wrong

OCD: Obsessive
Comment
Documentation

ALSO INSIDE
Editorial:
Lies Abound

Education Station:
Easily Build Regular Expressions
in PHP

Laravel Tips:
Adding Eloquent ORM to an
Existing Data Model

Confident Coder:
Commenting is More Than
Just Giving Your Opinion

�nally{}:
Embracing Our Roots

How to Be
a Better
Developer

Borrowed this magazine?

http://phpa.me/mag_subscribe

	Table of Contents
	Masters of Data
	MONTH IN REVIEW: February HAPPENINGS
	I18n by Translation Proxy
	Introduction to Neo4j
for PHP - Part 2
	SQL to NoSQL Migration
	Laravel Tips: Rapid Coding and Prototyping Through Generators
	Generate Test Data with Ease Using Faker
	Attention to Detail
	On Elegance

